skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Romero‐Olivares, Adriana_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The effect of warming on anti‐microbial resistance (AMR) genes in the environment has critical implications for public health but is little studied. We collected published soil bacterial genomes from the BV‐BRC database and tested the correlation between reported optimal growth temperature and the number of encoded AMR genes. Furthermore, we tested the relationship between temperature and AMR gene transcription in a natural ecosystem by analysing soil transcriptomes from a warming manipulation experiment in an Alaskan boreal forest. We hypothesised that there is a positive relationship between warming and AMR prevalence in gene content in bacterial genomes and transcriptomic sequences, and that this effect would vary by drug class. Regarding the bacterial genomes, we found a positive relationship between the fraction of encoded AMR genes and the reported optimal temperature of soil bacteria. The drug classes tetracycline and lincosamide/macrolide/streptogramin had the strongest positive relationship with reported optimal temperature. For the case study in a natural ecosystem, we found 61 significantly upregulated AMR gene‐associated transcripts spanning eight drug classes in warmed plots. In the Alaskan soil samples, we found that warming elicited the strongest positive effect on transcripts targeting lincosamide/streptogramin, beta‐lactam and phenicol/quinolone antibiotics. Overall, higher temperatures were linked to AMR gene prevalence. 
    more » « less